

Mathematics Specialist Units 1,2 Test 6 2018

Proof, Complex Numbers

STUDENT'S NAME

DATE: Monday 17 September

TIME: 50 minutes

MARKS: 52

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser, notes on one side of a single A4 page

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Express the recurring decimal 21.357575757..... as a rational number.

2. (6 marks)

(a) Given $(PQ)^3 = I$, show $QPQ = P^{-1}Q^{-1}P^{-1}$ where *I* is the identity matrix, *P* and *Q* are non-singular square matrices. [2]

(b) If matrix A is such that $A^2 = 4A - 7I$ where I is the identity matrix. Express A^4 in the form pA + qI. [4]

3. (4 marks)

Determine two numbers which have a sum of 3 and a product of 3.

4. (8 marks)

(a) Prove, by contradiction, $\log_{10} 2$ is irrational.

(b) Prove, by exhaustion, $(n+1)^3 \ge 3^n$ where *n* is a counting number ≤ 4 . [4]

5. (5 marks)

Prove, by mathematical induction, that $n^3 + 2n$ is divisible by 3 for any positive integer n.

6. (7 marks)

Simplify the following complex expressions leaving the answer in the form a + bi.

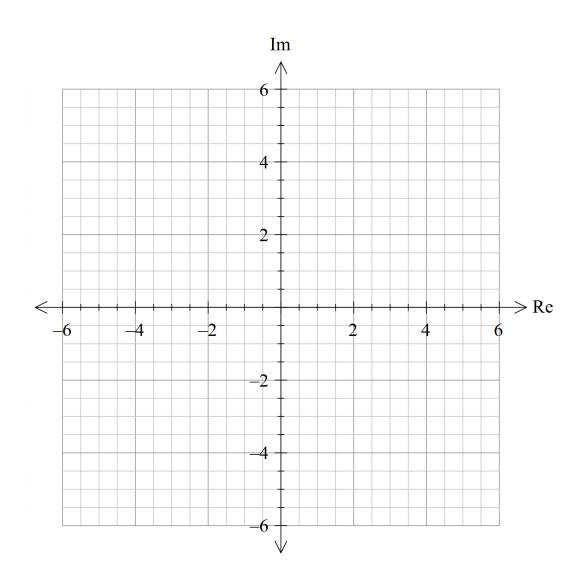
(a)
$$6-7i-(2-4i)$$
 [2]

(b)
$$\frac{4+3i}{1-2i}$$
 [3]

(c)
$$\frac{-i}{i^3}$$

[2]

7. (8 marks)


(a) One root of the equation $z^2 + az + b = 0$, where *a* and *b* are real constants, is 4-i. Determine the value of *a* and *b*. [4]

(b) Solve the equation $3z = (7+2i)^2 - \overline{z}$ for the complex number z. (Hint: let z = a + bi) [4]

8. (4 marks)

Given z = 3 - 4i, draw each of the following on the Argand diagram below. Clearly label each answer.

- (a) \bar{z} [1]
- (b) $i^3 z$ [1]
- (c) Im(z) [1]
- (d) $i \operatorname{Re}(z)$ [1]

9. (7 marks)

Use mathematical induction to prove the following conjecture:

$$1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^{n-1} = \frac{(1+x)^n - 1}{x}$$
, $n \ge 1, n$ a counting number.